УДК 621.396

СОВРЕМЕННОЕ СОСТОЯНИЕ СИСТЕМ ЭЛЕКТРОПИТАНИЯ НА ОСНОВЕ МЕМБРАННЫХ ТЕХНОЛОГИЙ ВОДОРОДНОЙ ЭНЕРГЕТИКИ

- В. Ф. Дмитриков, директор Департамента фундаментальной подготовки, заслуженный деятель науки РФ, профессор, д.т.н.; dmitrikov_vf@mail.ru
- А.И. Лившиц, профессор кафедры физики, д.ф.-м.н.
- Б. Ф. Дмитриев, профессор С.-Петербургского государственного морского технического университета, д.т.н.
- Д.В. Шушпанов, доцент кафедры теории электрических цепей, к.т.н.; dimasf@inbox.ru
- М. Е. Ноткин, ст. науч. сотр. НИИ лаборатории КРЭ, к.ф.-м.н.
- В. Н. Алимов, доцент кафедры физики, к.ф.-м.н.

Ключевые слова: водородная энергетика, композитная мембрана, генератор водорода (реформер), топливный элемент, импульсный преобразователь напряжения, схема управления.

Произошедший за рубежом в последние 10—15 лет прорыв в области технологий создания различного вида топливных элементов (ТЭ) способствовал появлению коммерческого интереса к разработкам в области энергетических установок на основе электрохимических генераторов, использующих ТЭ.

Всплеск этого интереса обусловлен высокой эффективностью немеханического преобразования энергии топлива в электрическую энергию, практической бесшумностью подобных устройств, отсутствием или существенным снижением выбросов в окружающую среду.

Все эти и ряд других качеств делают весьма перспективным использование ТЭ и электрохимических генераторов на их основе в изделиях военной техники и коммерческого применения.

Введение. Мощностной ряд ТЭ очень широк: от нескольких ватт до сотен киловатт. Ведутся проработки по созданию энергетических установок на основе ТЭ мощностью до нескольких мегаватт.

По сравнению с традиционными (дизельными и газотурбинными) энергетическими установками применение ТЭ в судостроении и в военном кораблестроении имеет ряд существенных преимуществ [1—3]:

- более высокую эффективность использования топлива;
- лучшие значения вибро-акустических характеристик, обеспечивающих большую скрытность по физическим полям;
- более простую возможность организации полного электродвижения;
 - лучшие экологические показатели.

Проблема энергосбережения при использовании углеводородного топлива наиболее эффективно решается на основе прямого преобразования химической энергии органического топлива в электрическую энергию с помощью водородных ТЭ.

При обычном горении в кислороде протекает окисление органического топлива, и химическая энергия топлива неэффективно переходит в тепловую энергию с дальнейшим ее превращением в электрическую.

Топливный элемент вырабатывает электричество без использования электрогенератора, т.е. без шума, перегрева и с гораздо более высоким КПД. Реализация такого КПД в ТЭ объясняется, во-первых, отсутствием промежуточных механических устройств, во-вторых, ТЭ не является тепловой машиной и не подчиняется циклу (закону) Карно, у которого КПД <30%.

В ТЭ используется топливо и окислитель. В качестве окислителя обычно применяют кислород, содержащийся

в воздухе, поэтому проблем с получением окислителя не существует, и топливо — водород, который берут из метанола, природного газа и другого водородосодержащего газа.

В России бурное развитие водородной техники началась в середине 1960-х гг.. Создание энергоустановок на основе кислородно-водородных ТЭ было обусловлено потребностями авиакосмической промышленности.

Российская наука в области ТЭ находилась на мировом уровне, а по ряду областей водородной техники и выше. Однако с конца 80-х гг. прошлого века и практически в течение последующих 20 лет в ряде областей водородной энергетики российские ученые уступили свое лидирующее положение.

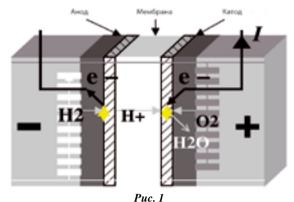
Следующий этап активного развития ТЭ, начавшийся в 90-е гг. прошлого столетия и продолжающийся сейчас, вызван потребностью в новых эффективных источниках энергии в связи с исчерпанием запасов такого топлива. Поскольку в ТЭ конечным продуктом сгорания водорода является вода, то их считают наиболее чистыми. Основная проблема заключается в нахождении эффективного и недорогого способа получения водорода.

Развитие ТЭ и генераторов водорода несомненно приведет к технологическому прорыву и сделают реальностью их использование в повседневной жизни: в различных системах электропитания сотовых телефонов, в автомобилях, на электростанциях, в жилищно-коммунальном строительстве и т.д. Но, несмотря на значительный прорыв в улучшении характеристик ТЭ, нужно решить еще много проблем, связанных с их стоимостью, надежностью, безопасностью.

По оценке экспертов к 20-м гг. нынешнего столетия годовой объем мирового рынка водородных технологий и ТЭ может составить 1—1,2 трлн долл. США и превысит годовой объем информационных технологий.

В настоящее время в России разработки в области ТЭ и портативных источников питания на их основе ведутся:

- Физико-технический институт им. А.Ф. Иоффе РАН, С. Петербург;
 - РНЦ «Курчатовский институт», Москва;
 - Научный центр РАН, Черноголовка;
 - Институт высоких температур РАН, Москва;
 - Российский Федеральный ядерный центр, Саров;
- Институт катализа им. Г.К. Борескова СО РАН, Новосибирск.


Крупные прикладные работы по судовым двигателям на ТЭ ведутся в С.-Петербургском ЦНИИ судовой электротехники и технологии (СЭТ) под руководством В.Б Авакова.

Виды ТЭ. Существуют различные ТЭ. Наиболее простым по принципу действия устройства является ТЭ с протонооб-

менной мембранной, принцип действия которого показан на рис. 1. В нем водород и кислород взаимодействуют, получая воду, электричество и тепло. Поступающий в элемент водород разлагается под действием катализатора на электроны и положительно заряженные ионы водорода (протоны):

$$H_2 \rightarrow H_2^+ + 2e^-$$
.

Специальная мембрана пропускает протоны, но задерживает электроны. Накопленные на аноде электроны создают отрицательный заряд, а ионы водорода — положительный заряд на катоде.

Топливный элемент реализует напряжение несколько больше 1 В. Если между анодом и катодом включить нагрузку, то электроны от анода потекут через нагрузку к катоду, создавая ток. Электроны соединяются с ионами водорода на катоде, к которому подается кислород:

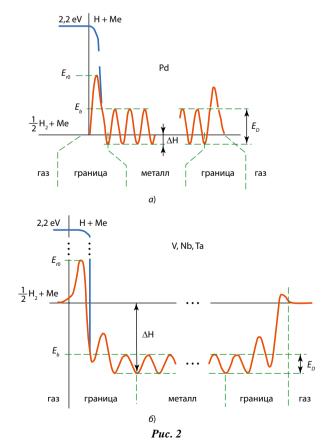
$$4e^- + O_2 + 2H_2^+ \rightarrow 2H_2O$$
.

Результирующая реакция, протекающая в ТЭ:

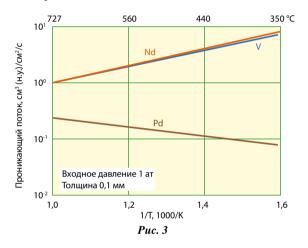
$$2H_2 + O_2 \rightarrow 2H_2O +$$
электричество + тепло.

Таким образом, в ТЭ возникает электрическая энергия и вода (жидкость, водяной пар, причем при образовании воды выделяется больше энергии и, следовательно, выше КПД). В качестве катализатора в ТЭ обычно применяются нанесенные на углеродную пластину микрочастицы платины. Такой катализатор хорошо пропускает газ и электричество.

В ТЭ водород можно поставлять в баллонах, но при этом остаются проблемы его добычи и транспортировки, учитывая что водород под большим давлением огнеопасен и взрывоопасен. В ТЭ водород можно получать из жидкого углеводородного топлива: метиловый или этиловый спирт и т.д. Однако в этом случае необходимо применять топливный преобразователь, превращающий углеводородное топливо в смесь газообразных H₂ и CO₂.


Таким образом, ТЭ является разновидностью электрохимических элементов. Существенным преимуществом ТЭ (в отличие от аккумуляторов) является то, что электроды в ТЭ в процессе генерации электрической энергии не изменяются, поскольку топливо и окислитель в их состав не входят, а поступают в ТЭ во время работы. В отличие от тепловых машин, где за счет прямого преобразования химической энергии в электрическую достигается существенно больший КПД.

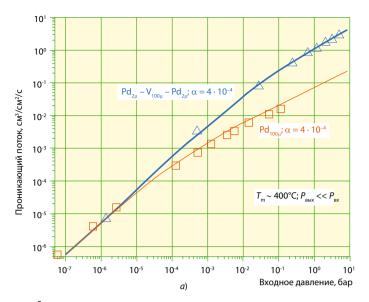
Работы сотрудников СПб ГУТ, включенные в федеральные целевые программы РФ на 2011—2020 гг. по водородной энергетике. Отметим основные достоинства и недостатки ТЭ, на устранение которых направлены усилия ученых СПб ГУТ. ТЭ позволяют осуществлять прямое преобразование химической энергии непосредственно в электрическую с более высо-

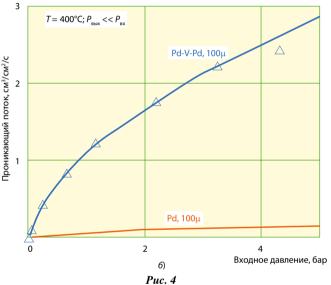

ким КПД и с меньшими экологическими последствиями, чем традиционные энергетические установки (газопоршневые, дизельные, газотурбинные). Поскольку в ТЭ веществом, энергия которого непосредственно преобразуется в электрическую, является водород высокой чистоты (99,99%), то основным ключевым узлом энергосистемы, основанной на ТЭ, является генератор чистого водорода. В нем водород получается путем химической конверсии исходного органического топлива: спирта, природного газа, бензина и т.п. Во всех случаях водород должен быть выделен из газовой смеси. Для этого используются дорогие и недостаточно эффективные селективные мембраны из драгоценных металлов. Это является одним из основных тормозов широкого использования энергосистем на ТЭ, первичным источником которых служит органическое вещество.

В связи с этим получение чистого водорода с помощью более эффективных и экологичных мембран становится актуальной задачей, решение которой может обеспечить прорыв в коммерческом освоении указанных новых энергетических технологий. С этой целью учеными СПб ГУТ под руководством д.ф.-м.н., проф. А.И. Лившица ведется разработка композитных мембран с наноразмерными покрытиями на основе металлов V группы (Nb, V), предназначенных для выделения водорода высокой чистоты для источников электропитания, основанных на твердополимерных T [4—8].

Считается, что палладий (Pd) и некоторые его сплавы обладают уникальной способностью к пропусканию водорода, поэтому металлические мембраны для выделения водорода делаются из Pd или его сплавов. В последние годы, однако, найдено, что транспорт водорода сквозь решетку металлов 5 группы (V, Nb, Ta) может происходить с существенно более высокой скоростью, чем через решетку Pd. Это, в частности, следует из потенциальных диаграмм систем H_2 -Pd (рис. 2, a) и H_2 -V (Nb, Ta) (рис. 2, δ).

Газообразный водород может с тем большей скоростью переноситься сквозь решетку металла, чем ниже уровень барьера E_b (уровень этого барьера, как следует из рис. 2, определяется алгебраической суммой энтальпии растворения водорода ΔH и барьера диффузии E_D). Как можно видеть из рис. 2, уровень барьера E_b в системах H_2 -V, Nb, Та существенно ниже, чем в H₂-Pd. Более того, уровень этого барьера в системах H₂-V, Nb, Та лежит ниже энергетического уровня атома Н в молекуле Н₂ (на рис. 2 этот уровень принят за 0). По этой причине скорость переноса водорода через решетку металлов 5 группы не только существенно выше, чем сквозь решетку Рd, но и имеет обратную температурную зависимость. Сравнение проницаемости Pd металлов 5 группы (V и Nb) по водороду в предложении, что поверхностные пленки не препятствуют абсорбции молекул H₂ в V и Nb (проницаемость V и Nb рассчитана по известным данным для коэффициента диффузии D и растворимости S водорода в этих металлах) приведено на рис. 3. Таким образом, металлы 5 группы в принципе способны пропускать водород со скоростью существенно большей, чем Pd и его сплавы. V и Nb к тому же гораздо дешевле, чем Рd, они хорошо обрабатываются, пластичны и легко свариваются.




Однако в отличие от Pd металлы 5 группы химически активны, их поверхность покрыта пленками неметаллических примесей (O, C, S), которые, препятствуя диссоциации молекул H_2 , блокируют доступ водорода в решетку, делая мембраны из этих металлов практически непроницаемыми для водорода (барьер E_{r0} на рис. 1). Кроме того, из-за своей химической активности эти металлы не могут работать в среде, содержащей O_2 , H_2O и углеводороды, при требуемых температурах (>250 °C).

Для того чтобы использовать уникальную способность металлов 5 группы к транспорту водорода *надо покрыть их поверхность пленкой*, способной:

- обеспечить достаточно быструю каталитическую диссоциацию молекул H₂;
- защитить материал мембраны от химического разрушения в среде химически активных газов;
 - пропускать водород с достаточной скоростью.

Этим условиям удовлетворяет покрытие из Pd или его сплавов, например, Pd-25 Ag или Pd-40 Cu. Условие по пропусканию водорода удовлетворяется, если покрытие достаточно тонкое (не более десятков нанометров). Именно такие композитные мембраны способны продемонстрировать рекордную проницаемость — в разы и даже на порядок более высокую, чем мембраны из Pd-25 Ag (при такой же 100% селективности).

Результаты предшествующих исследований указывают, что тонкие наноразмерные покрытия на основе Pd и его сплавов являются наиболее перспективными с точки зрения химической стойкости.

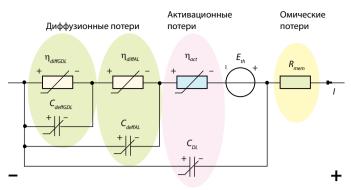
Что касается термической стойкости защищенного покрытия, то при рабочих температурах (выше 400 °C) возможна интердиффузия материалов покрытия и подложки. В результате этих процессов покрытие может быть нарушено. Проблемы могут быть решены путем формирования барьерного слоя, расположенного между защитным покрытием и основным материалом мембраны и препятствующего их взаимной интердиффузии. Сложность заключается в том, что такой барьерный слой, существенно ограничивая интердиффузионные процессы, не должен препятствовать транспорту водорода.

Таковы вкратце основные задачи, стоящие при разработке эффективных мембран для получения высокочистого водорода из органического топлива.

В СПб ГУТ были исследованы различные методы нанесения защитных покрытий и отработаны технологии плазменного и химического осаждения Pd на подложки из металлов V группы, позволяющие получать плотное и равномерное покрытия. В ходе проведенного цикла исследований зависимости характера и степени изменений морфологии покрытий при прогреве образцов от толщины покрытия, температуры

Puc. 5

нагрева и обработки подложки было выявлено, что рекристаллизация подложки (высокотемпературный отжиг) приводит к существенному увеличению термостабильности покрытия.


Исследования показали, что с точки зрения получения качественных покрытий, особенно на мембранах сложной формы (трубки), оптимальным является химическое нанесение покрытий.

К настоящему времени в СПб ГУТ проведены физические эксперименты с плоскими мембранами Pd-V-Pd. Зависимости проницаемости от входного давления, представленные на рис. 4 (a — логарифмический масштаб; δ — линейный), демонстрируют, что композитная мембрана обладает на порядок более высокой проницаемостью по сравнению с аналогом на основе мембран из сплавов Pd.

Благодаря разработанному методу химического осаждения Pd, сделан и испытан образец трубчатой мембраны из V с палладиевым покрытием (покрыта как внешняя, так и внутренняя поверхность). При площади ее поверхности 36 см^2 мембрана обеспечивает поток водорода 38 нормальных $\text{см}^3/\text{с}$. Изготовлен и находится в стадии испытаний мембранный модуль (рис. 5), рассчитанный на поток $H_21,2$ нормальных M^3/u , что соответствует мощности 3,6 кВт.

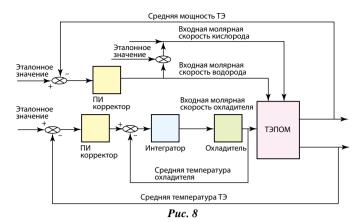
Разработка высокоэффективных агрегатированных устойчивых систем бесперебойного электропитания на основе ТЭ сотрудниками СПб ГУТ. Источники энергии на ТЭ создают широкий круг сложных и труднорешаемых задач при включении их в интегральные системы. Значительные усилия потребовались при исследовании функционирования ТЭ и создании систем на их основе, особенно по применению ТЭ с протонообменной мембраной (ТЭПОМ).

Решающую роль в работе ТЭ и систем на их основе играет управление. Предназначение системы управления заключается в изменении естественной реакции электрохимического реактора ТЭ и поддержании требуемого режима работы в случае каких-либо возмущений в энергетической установке: изменении входного напряжения или сопротивления нагрузки. Более того, система управления диагностирует ненормальный режим работы, следит за полнотой батареи ТЭ и изменяет работу в соответствии с ухудшением состояния материалов. Важность системы управления также обуславливает

Puc. 6

широкий круг рабочих условий, при которых должна функционировать топливная система.

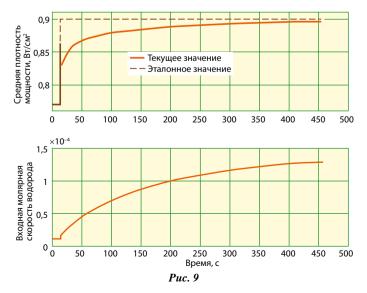
На рис. 6 представлена электрическая модель ТЭ, элементы которой учитывают все процессы, протекающие в ТЭПОМ: термодинамический потенциал $E_{\rm th}$, создающийся при реакции водорода с кислородом; диффузионные (транспортные) потери $\eta_{\rm diff}$, возникающие при транспорте газов; активационные потери $\eta_{\rm act}$, образующиеся от энергии активации электрохимической реакции на электродах; омические потери $R_{\rm mem}$, вызваные ионическим сопротивлением электролита и электродов; паразитные емкости, возникающие в результате перехода из одной области ТЭ в другую в динамике и статике. Таким образом, из-за различных процессов, протекающих в ТЭ, вольтамперная характеристика ТЭ отличается от идеальной (рис. 7) [9—11]:

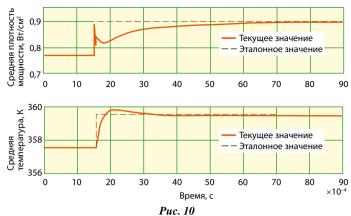

$$\begin{split} U_{\mathrm{T9}}(i,T,P_{\mathrm{H_2}},P_{\mathrm{O_2}}) &= E_{\mathrm{th}}(T,P_{\mathrm{H_2}},P_{\mathrm{O_2}}) - \\ &- \eta_{\mathrm{act}}(i,T) - \eta_{\mathrm{diff}}(i,T) - \eta_{\mathrm{ohm}}(T), \end{split}$$

где
$$E_{\mathrm{th}}(T,P_{\mathrm{H}_2},P_{\mathrm{O}_2}) = E_{\mathrm{th}}^0 + \frac{RT}{2F} \ln \frac{P_{\mathrm{H}_2} \sqrt{P_{\mathrm{O}_2}}}{P_{\mathrm{H}_2\mathrm{O}}};$$

F=96485,3383(83) Кл/моль — постоянная Фарадея, определяющая соотношение между электрохимическими и физическими свойствами вещества; R=8,31441~ Дж/(К \times моль) — молярная газовая постоянная. Как видно из формулы, напряжение на ТЭ зависит от температуры, давлений поступающих газов и тока нагрузки, что делает ТЭ и соответственно систему электропитания достаточно сложной нелинейной системой.

Ввиду сложности системы ТЭ и генератора водорода методы управления имеют различные особенности в зависимости от вида энергетической установки, включая управление мотором компрессора и управление давлением, контроль влажности, температуры, управление соотношением потоков газов, выходным напряжением, током и т.д.




Известны как линейный, так и нелинейный подход к расчету систем управления ТЭ [12]. Для того чтобы удовлетворить требованиям получения высокой плотности мощности в ТЭПОМ крайне необходима четкая методика управления.

Для эффективного управления работой ТЭ рекомендуется использовать многоконтурные обратные связи (ОС) (рис. 8) [12], обеспечивающие:

- контроль средней мощности ТЭ, поскольку мощность ТЭ должна находиться в заданных пределах;
- контроль средней температуры ТЭ, которая должна лежать в заданных пределах. Увеличение температуры ТЭПОМ выше определенной величины ухудшает проводимость мембраны и действие катализатора, которое, в свою очередь, влияет на скорость реакции, приводя к ухудшению выходных характеристик ТЭ;
- регулирование соотношением потоков газов. Для нормального протекания реакции необходимо, чтобы соотношение потоков водорода и кислорода оставалось постоянным и равнялось 2:1. В том случае не будет проблем с острым недостатком кислорода, и будет удовлетворено требование получения максимальной плотности мощности.

Зависимости процессов установления плотности мощности при изменении скорости потока водорода при контроле выходной мощности с помощью одноконтурной ОС приведены на рис. 9, а плотности мощности и температуры РЭ с помощью многоконтурной ОС — на рис. 10. Преимущество системы управления ТЭ с многоконтурными ОС над системами с одноконтурными ОС хорошо видны из этих рисунков. Если используется одноконтурная ОС (управление по мощности),

то время установления средней мощности будет составлять около 275 с (рис. 9), что неприемлемо для потребителя.

Для увеличения мощности на время переходного процесса необходимо подключать дополнительные накопители энергии — аккумуляторы или суперконденсаторы, что раздувает габариты всей энергетической установки и сводит на нет ее эффективность по энергозатратам. При использовании многоконтурной ОС время переходного процесса заметно уменьшается с 275 до 20 с, что является несомненным преимуществом.

Работа линейных схем управления происходит медленно из-за нелинейностей в динамической характеристике ТЭПОМ. Следовательно, важна и необходима нелинейная схема управления для эффективного контроля ТЭПОМ, перекрывающего широкий диапазон мощности [12]. Однако это — тема другой статьи.

Таким образом, наиболее перспективным методом получения особо чистого водорода для работы ТЭ является конверсия органического топлива с последующей мембранной отчисткой получаемого водорода. Оптимальные результаты с точки зрения эффективности работы экспериментальной установки и стоимости получаемой энергии могут быть достигнуты при использовании мембранных систем на основе металлов пятой группы (ванадий, ниобий), обладающих высокой проницаемостью водорода. Системы электропитания на базе разработанных мембран обладают высокой эффективностью.

ЛИТЕРАТУРА

- Михайлов А., Сайданов В., Ландграф И. Энергетические установки на базе топливных элементов. Перспективы применения//Новости электротехники.— 2007.— № 5.
- 2. **Аваков В.Б., Зинин В.И., Ландграф И.К.** Пути разработки и перспективы создания экономичной экологически чистой энергетики на топливных элементах//Российский химический журнал. 1994. т. XXXVIII. № 3. С. 55—60.
- Худяков С.А. Энергоустановки на основе топливных элементов для пилотируемых космических кораблей//Известия РАН. Энергетика. 2003. № 5. С. 48—60.
- Livshits A.I., Notkin M.E., Ohyabu N. et al. Hydrogen release through metallic surface: the role of sputtering and of the impurity dynamics//Physica Scripta — T108 (2004) 23.
- Лившиц А.И. и др. Сверхпроницаемость водорода в металлах V группы — применение для откачки и рециркуляции топливной смеси в термоядерных реакторах/Сборник докл. II междунар. сем. по взаимодействию водорода с конструкционными материалами/IHISM-2004, Саров, 12—17 апреля 2004 г. — С 75—83.
- Ноткин М.Е., Лившиц А.И., Алимов В.Н., Бакал М. Проникновение водорода сквозь карбидизированную ниобиевую мембрану//Металловедение. 2005. — № 9. — С. 47—53.

- 7. **Hatano Y., Watanabe K., Livshits A. et al.** Effects of bulk impurity concentration on the reactivity of metal surface: Sticking of hydrogen molecules and atoms to polycrystalline Nb containing oxygen//Journal of Chem. Phys. 127 № 20 (2007) 204707. P. 1—13.
- 8. Мусяев Р.К., Лебедев Б.С., Юхимчук А.А. и др. Исследование явления сверхпроницаемости изотопов водорода через ванадиевую мембрану на установке «Прометей»//Вопросы атомной науки и техники. Сер. Термоядерный синтез.— 2008.— Вып. 2.— С. 26—31.
- Hirschenhofer J.H., Stauffer D.B., Engleman R.R., Klett M.G. Fuel Cell Handbook/7 th edition.— Nov 2004 for US DOE.— 427 p.
- 10. Fontes G., Turpin C., Astier S., Meynard T.A. Interactions Between Fuel Cells and Power Converters: Influence of Current Harmonics on a Fuel Cell Stack//IEEE Trans. Power Electron.—March 2007.—Vol. 22, Nº 2.—P. 670—678.
- 11. **Fontes G., Turpin C., Astier S.** A large signal dynamic circuit model of a H₂-O₂ PEM fuel cell: description, parameter identification and exploitation//Fundamentals and Developments of Fuel Cell Conference (FDFC'08), Nancy, France.— 2008.
- 12. **Gou B., Na W.K., Diong B.** Fuel Cells. Modeling, Control and Applications/CRC Press. Taylor & Francis Group.— 2010.— 234 p.

Получено 8.09.10